

Of

Sheffield Solar

Microgen Database

Monthly Analysis on the microgen-database.org.uk Website

Jamie Taylor 2014-07-19

Outline

- What is PR?
- Spec Efficiency
- Achieved Efficiency
 - Calculating system generation
 - Interpolating irradiance
 - Calculating irradiance received
- Computation
- What's NextP

What is PR?

 Performance Ratio (PR) is a measure of PV performance that takes into account azimuth, elevation, weather and panel spec...
 ... but NOT shading, temperature or system losses

$$PR = \frac{\eta_{achieved}}{\eta_{spec}} \times 100\%$$

 $\eta_{achieved} \equiv Achieved \, Efficiency$ $\eta_{spec} \equiv Spec \, Efficiency$

Spec Efficiency

- Efficiency of panels under Standard Test Conditions (STC):
 - Irradiance:
 - <u>Air Mass Coefficient</u>:
 - Temperature:

1000 W/m² AM 1.5 global 25°C

• Values sourced from external database:

Photon.info The World of Information in the World of Solar Electricity

 Provides a means to normalise performance to panel specification, but fails to take into account panel response to different frequencies of light and temperatures

- Calculated on a per-month basis
- Calculate G from MgDb readings
- Calculate *I_{received}* from Met Office's MIDAS dataset

 $G \equiv Achieved \ Generation$ $I_{received} \equiv Irradiance \ Received \ (a.k.a \ H_T)$

Calculate System Generation

- Three possible scenarios:
 - 1) Readings available before sunrise on first day of month AND after sunset on last day of month Little/no error
 - 2) Readings available within 10 days of start AND end of month AND MIDAS data available for months 1, 2 and 3 More error
 - 3) Readings available within 10 days of start AND end of month BUT MIDAS data unavailable – Even more error
- Can cause results to vary month on month as extra readings are added or new MIDAS data becomes available

Calculate System Generation: Scenario 1

 Readings available before sunrise on first day of month AND after sunset on last day of month – Little/no error

 $G \equiv Achieved \ generation \ in \ month \ X$ $A \equiv Cumulative \ reading \ at \ start \ of \ month \ X$ $B \equiv Cumulative \ reading \ at \ end \ of \ month \ X$

 \bullet

Calculate System Generation: Scenario 2

 Readings available within 10 days of start AND end of month AND MIDAS data available for months 1, 2 and 3 – More error

Calculate System Generation: Scenario 3

 Readings available within 10 days of start AND end of month BUT MIDAS data unavailable – Even more error

Interpolating Irradiance

- Currently restricted to using Met Office weather stations
- Roughly 75 stations reporting hourly irradiance each month
- Coverage is NOT uniform
- How to interpolate from these sites to your roof?

Interpolating Irradiance: Shepard's Method

• Inverse distance weighting

$$\overline{H}(x) = \frac{\overline{H}_1}{\frac{d(x, x_1)^p}{d(x, x_2)^p}} + \frac{\overline{H}_2}{\frac{d(x, x_2)^p}{d(x, x_3)^p}} + \frac{\overline{H}_3}{\frac{d(x, x_3)^p}{d(x, x_3)^p}} + \frac{1}{\frac{1}{d(x, x_3)^p}} + \frac{1}{\frac{1}{d(x$$

$$\overline{H}(x) = \frac{\sum_{i=1}^{N} \frac{\overline{H}_i}{d(x, x_i)^p}}{\sum_{i=1}^{N} \frac{1}{d(x, x_i)^p}} \quad (unless \ d(x, x_i) = 0)$$

• What value should we use for p?

Interpolating Irradiance: Shepard's Method

- We "optimise" p...
 - I) Try all integer values of p in the range 0 to 10...
 - i. Calculate the relative error at each station for each value of p
 - ii. Choose p' to minimise the mean relative error across all stations
 - 2) Try decimal values of p in the range $(p' 0.5) \le p \le (p' + 0.5)$... Repeat steps i and ii
- Now we have *p*, we can interpolate the irradiance anywhere in the UK but this only gives us the "Global Horizontal Irradiance"!

$$relative \; error = \frac{interpolated\; irradiance - actual\; irradiance}{actual\; irradiance}$$

Calculating Irradiance Received

- Need to correct for array azimuth and elevation i.e. convert from "Global Horizontal" to "Global In-plane" irradiance
- Currently using equations from S. A. Klein, 1977 †

$$\overline{H}_{T} = \overline{R}\overline{H}$$

$$\overline{R} = \left(1 - \frac{\overline{H}_{d}}{\overline{H}}\right)\overline{R}_{b} + \frac{\frac{\overline{H}_{d}}{\overline{H}}\left(1 + \cos s\right)}{2} + \frac{\rho(1 - \cos s)}{2}$$
[†]Klein, S. A., 1977. Calculation of Monthly Average Insolation
on Tilted Surfaces. Solar Energy, Volume 19, pp. 325-329.

Calculating Irradiance Received

- Need to calculate the "diffuse fraction" $\frac{\overline{H}_d}{\overline{H}} = 1 1.13 \overline{K}_T$
- Use average monthly values of "clearness index" $\overline{R}_b = f(s, \delta, \phi, \gamma)$
- Plug all the numbers into these equations and we come out with \overline{H}_T now we can calculate the PR!!! $\overline{H}_d \equiv Diffuse Irradiance$

$$PR = \frac{\eta_{achieved}}{\eta_{spec}} \times 100\% = \frac{G}{\eta_{spec} \times \overline{H}_T} \times 100\%$$

 $\overline{H}_{d} \equiv Diffuse \, Irradiance$ $\overline{K}_{T} \equiv Clearness \, Index$ $\delta \equiv Solar \, Declination$ $\phi \equiv Latitude$ $\gamma \equiv Array \, Azimuth$

Computation

- Currently programmed in Matlab with MySQL database storing data
- Takes roughly 1 minute to run 13 month report for one installation
- Regular reports run much faster thanks to parallel processing on the University's HPC Cluster a.k.a "Iceberg"
- Results are automatically uploaded to the website's database, but not the spreadsheet report ⁽³⁾
- Potential for further optimisation and/or translation

MathWorks[.]

Powered by

What Next?

- Currently working on improving analysis for East-West systems
- Source new irradiance datasets
- Analyse on higher resolution e.g. daily PR, nearest neighbours

Any Questions?